CAPÍTULO

5

Aplicaciones de ED de segundo orden

5.3.8 Relación electromecánica

Como colofón de esta sección, comentaremos que existe una relación entre las ecuaciones diferenciales que modelan las vibraciones mecánicas y los circuitos. Esta relación electro-mecánica es de utilidad cuando se requiere modelar el comportamiento de un sistema mecánico debido a que es mucho más sencillo construir un sistema eléctrico equivalente. En la tabla siguiente se presenta la relación entre los diferentes elementos que componen un sistema eléctrico y un sistema mecánico.

Sistema mecánico	Sistema eléctrico
$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t)$	$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{1}{C}Q = V(t)$
Masa m	Inductancia L
Constante de amortiguamiento c	Resistencia R
Constante del resorte k	Capacitancia recíproca 1/C
Posición x	Carga Q
Fuerza F	Voltaje V

^{1.} canek.azc.uam.mx: 23/9/2010